ConnDOT's CMAQ Application

All information requested below must be furnished by the project sponsor to ensure complete processing of the application. If the information requested below does not apply to your project, indicate so by writing "NA" next to the question being asked. Submit four copies of your completed application to the following address:

Jennifer Carrier
Capitol Region Council of Governments
241 Main Street
Hartford, CT 06106

by 10:00 a.m. January 9, 2012

Attach additional sheets of paper if you are unable to fit the information on the application.

1. Project Title: Griswold St/House St/Harris St Intersection Realignment

Provide a descriptive title for the project that provides enough information to identify the project.

2. Project Sponsor: Town of Glastonbury, Connecticut

Provide the name of the group or agency requesting the CMAQ activity or project.

3. Date: January 6, 2012

Provide the application submittal date.

4. Contact Information: Daniel A. Pennington P.E.
Town Engineer/Manager of Physical Services
Town of Glastonbury
2155 Main St
Glastonbury, CT 06033
Telephone 860-652-7736
Fax 860-652-7734
Email Daniel.pennington@glastonbury-ct.gov

Include name, title, agency, address, telephone, FAX number and e-mail address of the individual who will be responsible for directing this project on a daily basis.
5. Town: Town of Glastonbury CT
Provide the name of the town where the project is located.

6. Regional Planning Organization (RPO): Capitol Region Council of Governments (CRCOG)
Provide the name of the RPO(s) that serves the area where the project will be located.

7. County: Hartford County
Provide the name of the County where the project will be located.

8. CMAQ Eligible Activities
Identify the category under which the proposed project qualifies for CMAQ funding. Indicate the category for CMAQ Eligibility from the following list. Reference FHWA’s October 2008 Final Program Guidance for qualifying information for each of the headings listed below. Not all possible requests for CMAQ funding are covered. To be eligible, projects must demonstrate air quality benefits.

 a. Transportation Control Measures
 b. Extreme Low-Temperature Cold Start Programs
 c. Alternative Fuels and Vehicles
 d. Congestion Reduction and Traffic Flow Improvements
 e. Transit Improvements (new/expanded service)
 f. Bicycle and Pedestrian Facilities and Programs
 g. Travel Demand Management (TDM)
 h. Public Education and Outreach Activities
 i. Transportation management Associations
 j. Carpooling and Vanpooling
 k. Freight/Intermodal
 l. Diesel Engine Retrofits & Other Advanced Truck Technologies
 m. Idle Reduction
 n. Training
 o. Inspection and Maintenance (I/M) new/expanded programs
 p. Experimental Pilot Projects

Additional information regarding project eligibility may also be found on-line in the federal Highway Administration’s (FHWA) Final Program Guidance located here: http://www.fhwa.dot.gov/environment/air_quality/cmaq/policy_and_guidance

9. Project Description: See Attached Description
Provide a written description of the proposed project that identifies (as appropriate):

 a. Project Location: Indicate the street or facility name and also the project limits. For roadway projects indicate the northernmost/southernmost and/or westernmost/easternmost point of the project. For transit station, transfer center or parking projects indicate the nearest intersections. Accurate descriptions are extremely important since the emissions benefits depend on the location.

 b. Identify project objectives, and why the project is needed.
c. If the project will require operation and maintenance three years after initial construction, submit a "systems engineering analysis" indicating how the project will be maintained and operated.

Additionally, on a separate sheet(s), provide a map of the project area that shows the proposed project location.

10. Project Schedule: See Attached Schedule

Provide the project schedule for all phases, including the start and completion dates, and project milestones. Also, provide the federal fiscal year in which each phase will begin.

11. Estimated Budget: $1,455,600 (See attached detailed estimate)

Provide the total cost of the project with a breakdown by phases—Preliminary Engineering, Right-of-Way and Construction/Implementation. This includes, for example, construction estimates, equipment purchases, in-house services, and consultant services. Please use "implementation" to denote the completion of a non-construction project (e.g., purchasing buses). Good cost estimating is critical because the project sponsors will be responsible for cost overruns on selected projects. Utilize the latest ConnDOT weighted unit bid prices for project cost. The Department's cost estimating guidelines can be located at the following website: http://www.ct.gov/dot/cwp/view.asp?a=3886&q=459664

12. Documentation of Local Match: See transmittal letter from Town Manager Richard J. Johnson

Provide the source of the local match. This cannot be other federal funds. If the local government will be providing the match, complete and attach a Resolution of Intent to Provide a Local Match. The local match must be a cash match.

13. Project Assessment

To facilitate the air quality emission analysis and scoping for the proposed project, please provide the information requested below (as appropriate):

a. If the project involves the purchase of vehicles the following must be included:
 I. Number of vehicle
 II. Type of vehicles (passenger car, school bus, truck [weight, type])
 III. Annual average mileage anticipated per vehicle
 IV. Average number of days per week in service
 V. Type of alternative fuel (if applicable)
 VI. Percent time such fuel will be used (hybrids)
 VII. Type and fuel of vehicles being replaced if known
 VIII. Length of route in miles (one-way)
 IX. Number of new riders anticipated.

b. For signal system updates, please provide:
 I. The number of signals: one signal replaced, one signal modified (coordinated)
II. The locations: Intersection Realignment and signal replacement at Griswold St/House St/Harris St. Coordination of existing signal at Griswold St/Bantle Rd/RT 2 off ramp

III. Length of roadway segment: Approximately 925’ between intersections
 Approximately 3400’ of roadway directly affected

IV. Roadway ADT and year of ADT: 2008 Traffic Counts
 12,900 ADT west of Harris St
 7500 ADT east of House St

V. Current speed on route and the new anticipated speed as a result of signalization

VI. Estimated reduction in vehicular delay: Overall intersectional delay reduced from 156 seconds to 44 seconds. Detailed Operation Summary provided in Table 1 attached.

For **Diesel fuel particulate filters** and other **diesel retrofit** devices, please provide:

I. The type of filter
II. Number of vehicles
III. Type of vehicles (bus, tractor trailer)
IV. Annual mileage per vehicle
V. Percent of idle time.

d. Alternative Fuel Vehicles:

I. Number of vehicles
II. Type of fuel
III. Type of Vehicles (passenger car, school bus, truck (weight, type))
IV. Percentage of time if hybrid of each fuel usage
V. Number of annual average miles per vehicle
VI. Average number of days per week vehicle will be used

e. If additional parking spaces or new parking lots are constructed near mass transit stations, provide:

I. The number of parking spaces or new spaces (if an existing lot)
II. Any existing survey data which would provide O/D data from station area.

f. Incident Management:

I. Length of roadway where equipment will be used (in miles)
II. Estimated savings in Vehicle hours
III. VMT without an incident management system in place.

g. For bicycle lockers or paths:

I. Length of facility
II. Number of potential users
III. Number of lockers
IV. Survey results if available
V. Does facility have an end point in a Central Business Area?

h. Transit Projects:
 I. Project type (System start-up, service and equipment, facility improvement)
 II. Auto trips eliminated per day (round trips)

Keep in mind, the following types of projects do not historically provide enough data to prepare a quantitative analysis; therefore they will require some subjective judgments about their potential benefits, hence they are analyzed qualitatively:
 - Marketing of Transit Services
 - Telecommuting
 - Research and Support programs
 - Variable Message Signs

In all cases, please provide all necessary data (even if not listed above) to facilitate emission analysis procedures. The nature of the project defines what is needed to complete an analysis.

14. Congestion: See Attached

Indicate how the project contributes to a reduction in congestion, i.e. reduction in vehicular delay, increased travel speeds, etc.

Project sponsors can provide assumptions and related information needed to calculate a project's emissions benefit; therefore, in addition to the information requested above, if available, provide a written description of the expected air quality benefits, and attach an air quality assessment prepared by the project sponsor, including analysis of the following:

 a. Estimate of VMT reduction
 b. Estimate of NOX reduction
 c. Estimate of VOC reduction
 d. Estimate of PM reduction (for PM Non-Attainment Areas)
 e. Expected qualitative benefits / other benefits when the above is unquantifiable

This information could be used by the Department in its air quality assessment of selected projects.

16.

Signature of Authorized Representative: Daniel A. Pennington P.E.
Date: January 6, 2012

Name: Daniel A. Pennington P.E.
Title: Town Engineer/Manager of Physical Services
Item 9
Project Description

The Griswold Street and House Street/Harris Street Intersection Improvement Project
involves the reconstruction of the project intersection in the northern section of the Town
of Glastonbury, Connecticut. The intersection reconstruction project will realign the
House Street leg to be directly opposite from Harris Street, whereas the House Street
approach is currently approximately 75 feet east of Harris Street. Minor sliver widening
will be required on all approaches except the westerly leg to maximize the intersection
capacity. The project will also upgrade and modernize the existing traffic and pedestrian
signal equipment and provide new east-west traffic signal coordination amongst Main
Street, Route 2 Eastbound Off-Ramp/Bantle Road, and House Street/Harris Street
intersection to enhance traffic flow in the corridor. Minor modifications and signal timing
adjustments will be required at the Griswold Street and Route 2 Eastbound Off-Ramp/
Bantle Road intersection in order to coordinate the traffic signals. The sidewalks within
the project intersection will be widened to five feet and the sidewalk ramps reconstructed
to meet current ADA standards. The proposed pedestrian signals will be Accessible
Pedestrian Signals equipped with audible signals and countdown signal heads, meeting
the 2009 Manual on Uniform Traffic Control Devices. Naubuc School is located 0.3
miles west of the Griswold Street and House Street/Harris Street intersection, within the
corridor. Providing the pedestrian accessibility improvements at the project location will
benefit the residents along the Griswold Street and House Street/Harris Street
intersection, which utilize the facilities at Naubuc School. The project goal is to reduce
the existing congestion and vehicle queuing at the intersection during the peak travel
hours. Figure 1 shows the project location in relation to the surrounding roadway
network area.
Item 10
Project Schedule

- **Award Date:**

- **Project Scope Development and Consultant Selection Process:** 5 months
 Includes CONNDOT Project Concept Unit review, consultant selection via quality-based selection criteria, consultant fee negotiation, development of Town/State design agreement, etc.

- **Design Process:** 6 months
 Includes Town and CONNDOT review at preliminary and final design stages. Includes consultant response to comments, specification development, and public hearing/public notification requirements.

- **Advertising/Bid Award:** 2 months
 Includes obtaining permission to advertise, bid review, reference verification, obtaining permission to award, issuance of notice to proceed etc.

- **Construction:** 6 months
 Includes lead time on ordered signal equipment, mobilization, signal coordination, etc.
Cost Summary: Construction Costs

Town: Glastonbury

Project: Griswold St/House St/Harris St Intersection Realignment

1. **Construction Items** (from your itemized estimate) $684,414
2. **Minor Items** (25% or less) 15% 102,662
3. **SUM of 1 and 2** 787,076

Lump sum items (estimate as % of line 3 using percentages suggested below)

4. **Clearing & Grubbing** 2% 15,742
5. **Mobilization** 7.5% 59,031
6. **Maintenance & protection of traffic** 4% 31,483
7. **Construction Staking** 1% 7,871
8. **Environmental Considerations** 12% 0
9. **Inflation** (5% per year - assume 4 years) 20% 157,415
10. **SUM of 4 thru 9** 271,542

11. **Total contract items** (Add lines 3 & 10) 1,058,618
12. **Contingencies** (10% of line 11) 105,862

13. **Contract items & contingencies** (Add lines 11 & 12) 1,164,480
14. **Incidentals** (25% or 30% of line 13) (30% for projects under $1,000,000) 25% 291,120
15. **Traffic person** (included in construction items) 0
16. **Utilities** (enter only if on State roads or MDC) 0
17. **Railroad force account** 0

18. **TOTAL CONSTRUCTION COST** (sum of lines 13 thru 17) $1,455,600
OPINION OF PROBABLE COST

Intersection Improvements

Griswold Street at House Street / Harris Street

Town of Glastonbury, Connecticut

Calculated By: ECW
Checked By: COG
Date: September 15, 2011

<table>
<thead>
<tr>
<th>ITEM NUMBER</th>
<th>DESCRIPTION</th>
<th>UNIT</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0202001</td>
<td>Earth Excavation</td>
<td>C.Y.</td>
<td>90</td>
<td>$37.50</td>
<td>$3,375.00</td>
</tr>
<tr>
<td>0202513</td>
<td>Removal of Existing Concrete Sidewalk</td>
<td>S.Y.</td>
<td>415</td>
<td>$15.00</td>
<td>$6,225.00</td>
</tr>
<tr>
<td>0202522</td>
<td>Removal of Bituminous Pavement</td>
<td>S.Y.</td>
<td>135</td>
<td>$6.75</td>
<td>$911.25</td>
</tr>
<tr>
<td>0202529</td>
<td>Cut Bituminous Concrete Pavement</td>
<td>L.F.</td>
<td>870</td>
<td>$4.00</td>
<td>$3,480.00</td>
</tr>
<tr>
<td>0207004</td>
<td>Borrow</td>
<td>C.Y.</td>
<td>3,095</td>
<td>$14.00</td>
<td>$43,330.00</td>
</tr>
<tr>
<td>0406267</td>
<td>Milling of Bituminous Pavement</td>
<td>S.Y.</td>
<td>1,455</td>
<td>$7.50</td>
<td>$10,912.50</td>
</tr>
<tr>
<td></td>
<td>Bituminous Concrete Overlay</td>
<td>S.F.</td>
<td>14,115</td>
<td>$1.58</td>
<td>$22,301.70</td>
</tr>
<tr>
<td></td>
<td>Pavement Structure (Arterial-Griswold)*</td>
<td>S.F.</td>
<td>2,213</td>
<td>$12.00</td>
<td>$26,556.00</td>
</tr>
<tr>
<td></td>
<td>Pavement Structure (Collector-House/Harris)*</td>
<td>S.F.</td>
<td>10,110</td>
<td>$8.75</td>
<td>$88,462.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NUMBER</th>
<th>DESCRIPTION</th>
<th>UNIT</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0507001</td>
<td>Type "C" - CB</td>
<td>EA</td>
<td>3</td>
<td>$3,000.00</td>
<td>$9,000.00</td>
</tr>
<tr>
<td>0691011</td>
<td>12" Rigid Concrete Pipe</td>
<td>L.F.</td>
<td>90</td>
<td>$52.00</td>
<td>$4,680.00</td>
</tr>
<tr>
<td>0811001</td>
<td>Concrete Curb</td>
<td>L.F.</td>
<td>1,180</td>
<td>$35.00</td>
<td>$41,300.00</td>
</tr>
<tr>
<td>0815091</td>
<td>Removal of Bituminous Concrete Curb</td>
<td>L.F.</td>
<td>1,210</td>
<td>$3.00</td>
<td>$3,630.00</td>
</tr>
<tr>
<td>0921001</td>
<td>Concrete Sidewalk</td>
<td>S.F.</td>
<td>4,820</td>
<td>$12.50</td>
<td>$60,250.00</td>
</tr>
<tr>
<td>0921011</td>
<td>Concrete Driveway</td>
<td>S.F.</td>
<td>100</td>
<td>$15.00</td>
<td>$1,500.00</td>
</tr>
<tr>
<td>0922501</td>
<td>Bituminous Concrete Driveway</td>
<td>S.Y.</td>
<td>20</td>
<td>$36.00</td>
<td>$720.00</td>
</tr>
<tr>
<td>0922503</td>
<td>Gravel Driveway</td>
<td>S.Y.</td>
<td>60</td>
<td>$22.00</td>
<td>$1,320.00</td>
</tr>
<tr>
<td>0944002</td>
<td>Furnishing and Placing Topsoil</td>
<td>S.Y.</td>
<td>1,925</td>
<td>$6.50</td>
<td>$12,512.50</td>
</tr>
<tr>
<td>0950005</td>
<td>Turf Establishment</td>
<td>S.Y.</td>
<td>1,925</td>
<td>$2.50</td>
<td>$4,812.50</td>
</tr>
<tr>
<td>0970006</td>
<td>Trafficperson (Police)</td>
<td>$/HR</td>
<td>800</td>
<td>$75.00</td>
<td>$60,000.00</td>
</tr>
<tr>
<td>0970007</td>
<td>Trafficperson (Uniformed Flagger)</td>
<td>$/HR</td>
<td>800</td>
<td>$55.00</td>
<td>$44,000.00</td>
</tr>
<tr>
<td>1118010</td>
<td>New Traffic Signal</td>
<td>L.S.</td>
<td>1</td>
<td>$200,000.00</td>
<td>$200,000.00</td>
</tr>
<tr>
<td>1208928</td>
<td>Removal of Existing Traffic Signal Equipment</td>
<td>L.S.</td>
<td>1</td>
<td>$3,000.00</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>1208996</td>
<td>Signage</td>
<td>S.F.</td>
<td>80</td>
<td>$65.00</td>
<td>$5,200.00</td>
</tr>
<tr>
<td>1210101</td>
<td>Metal Sign Post</td>
<td>EA</td>
<td>9</td>
<td>$73.00</td>
<td>$657.00</td>
</tr>
<tr>
<td>1210102</td>
<td>Epoxy Paint - 4" White</td>
<td>L.F.</td>
<td>275</td>
<td>$0.50</td>
<td>$137.50</td>
</tr>
<tr>
<td>1210104</td>
<td>Epoxy Paint - 8" White</td>
<td>L.F.</td>
<td>850</td>
<td>$0.75</td>
<td>$637.50</td>
</tr>
<tr>
<td>1210105</td>
<td>Epoxy Paint - Symbols And Legends</td>
<td>S.F.</td>
<td>160</td>
<td>$4.09</td>
<td>$654.40</td>
</tr>
<tr>
<td>1210106</td>
<td>Epoxy Paint - 12" White</td>
<td>L.F.</td>
<td>95</td>
<td>$1.25</td>
<td>$118.75</td>
</tr>
<tr>
<td></td>
<td>Relocation of Existing Utility Pole</td>
<td>EA</td>
<td>3</td>
<td>$6,000.00</td>
<td>$24,000.00</td>
</tr>
</tbody>
</table>

Unit Price Subtotal $684,414.10

NOTE:

* Pavement composite includes HMA lifts, subbase course, tack coat, and formation of subgrade

Arterial - 4" HMA 0.5 inch, 6" HMA 1.0 inch on 14" Subbase
Collector - 3" HMA 0.5 inch, 6" HMA 1.0 inch on 10" Subbase
Item 14
Congestion

The Griswold Street and House Street/Harris Street intersection operates at overall LOS F during the weekday afternoon peak hours and at an overall LOS D during the Saturday midday peak hours. The intersection overall LOS is expected to remain in the 2030 No-Build conditions with increased average delays.

Within the proposed improvements, the intersection overall LOS will be improved to LOS D during the weekday afternoon peak hours, and LOS C during the Saturday midday peak hours. The intersection average delays will be reduced from 156 seconds per vehicle to 44 seconds per vehicle during the afternoon peak hours, and from 48 seconds per vehicle to 26 seconds per vehicle during the Saturday midday peak hours. The Griswold Street eastbound approach will be improved to operate at LOS E, with average delays reduced from 297 seconds per vehicle to 56 seconds per vehicle, a significant 81% reduction with resulting decreases in queue lengths.

The Griswold Street and Route 2 Eastbound Off-Ramp/Bantle Road traffic signal operates at overall LOS B during both study peak hours currently, and will continue to operate at overall LOS B during the 2030 No-Build, and 2030 Building conditions. Because the coordinated signal will be less traffic responsive to serve the demand coming off Route 2, the southbound approach, therefore, will be impacted to operate at reduced LOS in order to improve the traffic flow on Griswold Street and the operation at the House Street/Harris Street intersection. However, the Off-Ramp has significant storage for queued vehicles to accommodate this reduced operation.

Queue Analyses

The Griswold Street and House Street/Harris Street intersection currently operates with significant 95th percentile queues on all approaches except the Harris Street southbound during both study peak hours. This condition is expected to worsen in the 2030 No-Build condition. Under the 2030 No-Build condition, the Griswold Street eastbound will operate with 50th percentile queue of 790 feet, and 95th percentile queue of 1,335 feet. The westbound approach will operate with 50th percentile queue of 395 feet, and 95th percentile queue of 815 feet. The House Street northbound approach will operate with 50th percentile queue of 260 feet, and 95th percentile queue of 615 feet.

With the proposed improvements, the Griswold Street eastbound 50th and 95th percentile queues will reduce to 640 feet and 1,210 feet respectively. The Griswold Street westbound 50th and 95th percentile queues will reduce to 280 feet and 710 feet respectively. The House Street northbound 50th and 95th percentile queues will reduce to 140 feet and 245 feet respectively. These are significant reductions in queuing on House Street during the peak hours.

The 95th percentile queue on Griswold Street will remain longer than desired, primarily due to the longer pedestrian crossing phase as required by the current standards. This 95th percentile queues during the peak hours will likely occur only when the pedestrian phase is actuated, reducing the capacity of the intersection. The queue calculations assumed a minimum number of ten pedestrian actuations per hour. If these actuations are less, then the vehicle queuing will be potentially less than 1,000 feet. In addition, the 50th percentile vehicle queues will be significantly reduced by a minimum of 20 percent, in addition to the aforementioned reduction in average delays.
<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Intersection Operation Summary - Vehicular Levels of Service / Average Delay (sec/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lane Use</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Signal - Griswold Street at Route 2 Eastbound Off Ramp / Bentle Street</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
</tr>
<tr>
<td>Griswold St</td>
<td>EBT</td>
</tr>
<tr>
<td>Griswold St</td>
<td>WB</td>
</tr>
<tr>
<td>Bentle St</td>
<td>NBT</td>
</tr>
<tr>
<td>Rt 2 EB Off Ramp</td>
<td>SBT</td>
</tr>
<tr>
<td>Rt 2 EB Off Ramp</td>
<td>SBR</td>
</tr>
<tr>
<td>Traffic Signal - Griswold Street at Harris Street / House Street</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
</tr>
<tr>
<td>Griswold St</td>
<td>EBL</td>
</tr>
<tr>
<td>Griswold St</td>
<td>EBT</td>
</tr>
<tr>
<td>Griswold St</td>
<td>WBL</td>
</tr>
<tr>
<td>Griswold St</td>
<td>WBT</td>
</tr>
<tr>
<td>House St</td>
<td>NBL</td>
</tr>
<tr>
<td>House St</td>
<td>NBT</td>
</tr>
<tr>
<td>House St</td>
<td>KBBT</td>
</tr>
<tr>
<td>House St</td>
<td>NBR</td>
</tr>
<tr>
<td>Harris St</td>
<td>SBT</td>
</tr>
<tr>
<td>Harris St</td>
<td>SBR</td>
</tr>
</tbody>
</table>

NOTE:
< Shared left and through lane
> Shared right and through lane
| Traffic Signal - Griswold Street at Route 2 Eastbound Off Ramp / Bentle Street | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Lane Use | Available Storage | Weekday Afternoon Peak Hour | Saturday Midday Peak Hour | | | | |
| | 2010 | 2030 | No-Build | 2010 | 2030 | No-Build | 2030 |
| Griswold St | EBT> | 1800 | 170 | 1453 | 195 | 505 | 88 | 922 | 99 | 202 | 136 | 310 | 220 | 57 |
| Griswold St | <WBT | 230 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bentle St | <NB> | >1000 | 61 | 118 | 65 | 125 | 159 | 273 | 21 | 68 | 30 | 109 | 97 | 162 |
| Rt 2 EB Off Ramp | <SBT | >1000 | 500 | 0 | 36 | 0 | 37 | 0 | 53 | 9 | 36 | 0 | 42 | 0 | 56 |

Traffic Signal - Griswold Street at Harris Street / House Street														
Lane Use	Available Storage	Weekday Afternoon Peak Hour	Saturday Midday Peak Hour											
	2010	2030	No-Build	2010	2030	No-Build	2030							
Griswold St	EBL	200	200	60	22	66	12	m23	12	42	14	46	5	m36
Griswold St	EBT>	750	728	1251	791	1336	638	1207	279	636	333	749	148	643
Griswold St	WUL	170	35	187	39	128	33	164	39	809	46	138	25	84
Griswold St	WBT>	>1000	314	710	396	815	280	712	245	557	281	639	201	528
House St	<NB>	>1000	228	538	260	612	180	420	206	484	225	548	99	166
House St	<NBT	>1000	141	244	126	212	136	212	145	245	136	236	105	172
House St	NBR	200	--	--	--	--	--	--	--	--	--	--	--	--
Harris St	SBT	>1000	43	102	48	110	36	99	40	97	36	77	10	30
Harris St	SBR	100	--	--	--	--	--	--	--	--	--	--	--	--

NOTE:
- < Shared left and through lane
- > Shared right and through lane
- ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.
Griswold / Harris / House Street
Intersection Improvement
Emission Summary Report
Town of Glastonbury

January 2012

Project Description

The intersection of Griswold Street, Harris Street, and House Street in Glastonbury is currently an offset intersection with separate signal times for Harris Street and House Street. This project will realign the intersection such that it will function as a standard four way junction, as well as coordinating signals with existing intersections along Griswold Street. These improvements are intended to ease congestion and improve air quality.

Emission Analysis

Realignment of an offset intersection for the purpose of reduced queuing is comparable to other signal system improvements in regards to air quality analysis. Therefore, similar assumptions for changes in average speed can be made for emission reduction calculations.

Assuming the initial average congested speed of 20 mph, vehicular speeds would increase to 21.8 mph\(^1\). VOC and NOx factors were computed for each of these speeds using model year 2012 and then multiplied by the VMT accrued in the project area to determine emission production. The results have been tabulated and are shown below using the following Mobile 6.2 emission factors:

<table>
<thead>
<tr>
<th>Greater CT Area:</th>
<th>VOC</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 20.0 mph</td>
<td>0.505 g/mi</td>
<td>0.504 g/mi</td>
</tr>
<tr>
<td>Upgrade 21.8 mph</td>
<td>0.489 g/mi</td>
<td>0.491 g/mi</td>
</tr>
</tbody>
</table>

The section of Griswold Street in Glastonbury impacted by this project is broken down into segments between Main Street and the Harris / House Street intersection. The following table lists the segment descriptions and their corresponding segment numbers for use in the attached emission calculation spreadsheet.

\(^1\) This work is documented in the report "Before and After Evaluation of Computerzed Urban Traffic Control Systems in the Greater Hartford Area".
Segment Description #
Main St to Brewster Rd 1
Brewster Rd to Bantle Rd 2
Bantle Rd to Route 2 Onramp 3
Route 2 Onramp to Harris St / House St 4

Glastonbury Griswold St / Harris St / House St Intersection Improvement Emission Summary Report
January 2012

Traffic Flow Improvements

<table>
<thead>
<tr>
<th>Proj No.</th>
<th>Segment</th>
<th>Start Mile</th>
<th>End Mile</th>
<th>Segment Length (miles)</th>
<th>2011 ADT**</th>
<th>2011 VMT</th>
<th>VOC Base (Kg)</th>
<th>VOC Upgrade (Kg)</th>
<th>VOC Change (Kg)</th>
<th>NOx Base (Kg)</th>
<th>NOx Upgrade (Kg)</th>
<th>NOx Change (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Griswold St</td>
<td>1</td>
<td>0.00</td>
<td>0.06</td>
<td>12,665</td>
<td>1,013</td>
<td>0.51</td>
<td>0.59</td>
<td>-0.02</td>
<td>0.51</td>
<td>0.50</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(Gtr CT Area)</td>
<td>2</td>
<td>0.08</td>
<td>0.35</td>
<td>12,534</td>
<td>3,386</td>
<td>1.71</td>
<td>1.66</td>
<td>-0.05</td>
<td>1.71</td>
<td>1.66</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>Glastonbury</td>
<td>3</td>
<td>0.35</td>
<td>0.41</td>
<td>11,706</td>
<td>702</td>
<td>0.35</td>
<td>0.34</td>
<td>-0.01</td>
<td>0.35</td>
<td>0.34</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.41</td>
<td>0.51</td>
<td>14,205</td>
<td>1,421</td>
<td>0.72</td>
<td>0.69</td>
<td>-0.03</td>
<td>0.72</td>
<td>0.70</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>3.29</td>
<td>3.20</td>
</tr>
</tbody>
</table>

** 2011 ADT acquired from the Town of Glastonbury

The emission reductions for the year 2012 are:

VOC: 0.10 kg/day
NOx: 0.08 kg/day

Prepared by:
Travel Demand Forecasting Unit
Bureau of Policy & Planning
Connecticut Department of Transportation